11 research outputs found

    Highly efficient Brillouin slow and fast light using As2Se 3 chalcogenide fiber

    Get PDF
    We demonstrate the generation of slow and fast light based on stimulated Brillouin scattering in As2Se3 chalcogenide fiber with the best efficiency ever reported. The Brillouin gain of 43 dB is achieved with only 60-mW pump power in a 5-m single-mode chalcogenide fiber, which leads to the optical time delay of 37 ns with a 50-ns Gaussian pulse. © 2006 Optical Society of America

    Multicore and multimode optical amplifiers for space division multiplexing

    No full text
    Space division multiplexing (SDM) has attracted considerable attention within the fiber optics communication community as a very promising approach to significantly increase the transmission capacity of a single optical fiber and to reduce the overall cost per transmitted bit of information. Various SDM transmission fibers, for example, multicore fibers and multimode fibers, have been introduced, and a more than 100-fold capacity increase (~10 Pbit/s) relative to conventional single-mode fiber systems has successfully been demonstrated. Also, a wide range of new SDM components and SDM amplifiers has accordingly been developed, with most now realized in a fully fiberized format. These fully integrated devices and subsystems are one of the key requirements for the deployment of practical SDM in future networks due to their potential for cost-, energy-, and space-saving benefits. In this chapter, we review the state of the art in optical amplifiers for the various SDM approaches under investigation, with particular focus on multicore and multimode devices

    Liposomal Drug Delivery of Blumea lacera Leaf Extract: In-Vivo Hepatoprotective Effects

    No full text
    Background: Blumea lacera (B. lacera) is a herbaceous plant commonly found in south-east Asia. It shows significant therapeutic activities against various diseases. The objectives of this study were to evaluate hepatoprotective effects of Blumea lacera leaf extract and also to investigate the comparative effectiveness between a liposomal preparation and a suspension of B. lacera leaf extract against carbon tetrachloride (CCl4)-induced liver damage. Methods: B. lacera leaf extract was characterized using a GC-MS method. A liposomal preparation of B. lacera leaf extract was developed using an ethanol injection method and characterized using dynamic light scattering (DLS) and electronic microscopic systems. The hepatoprotective effects of B. lacera leaf extracts and its liposomal preparation were investigated using CCl4-induced liver damage in Long Evan rats. Results: GC-MS data showed the presence of different components (e.g., phytol) in the B. lacera leaf extract. DLS and microscopic data showed that a liposomal preparation of B. lacera leaf extracts was in the nano size range. In vivo study results showed that liposomal preparation and a suspension of B. lacera leaf extract normalized liver biochemical parameters, enzymes and oxidative stress markers which were elevated due to CCl4 administration. However, a liposomal formulation of B. lacera leaf extract showed significantly better hepatoprotective effects compared to a suspension of leaf extract. In addition, histopathological evaluation showed that B. lacera leaf extract and its liposomal preparation treatments decreased the extent of CCl4-induced liver inflammations. Conclusion: Results demonstrated that B. lacera leaf extract was effective against CCl4-induced liver injury possibly due to the presence of components such as phytol. A liposomal preparation exhibited significantly better activity compared to a B. lacera suspension, probably due to improved bioavailability and stability of the leaf extract

    Incidence of acute diarrhea-associated death among children < 5 years of age in Bangladesh, 2010-12

    No full text
    Although acute diarrheal deaths have declined globally among children = 13.6 km. Diarrhea contributes to childhood death at a higher proportion than when considering it only as the sole underlying cause of death. These data support the use of interventions aimed at preventing acute diarrhea, especially available vaccinations for common etiologies, such as rotavirus

    Controlling the Outbreak of COVID-19 : A Noncooperative Game Perspective

    Get PDF
    COVID-19 is a global epidemic. Till now, there is no remedy for this epidemic. However, isolation and social distancing are seemed to be effective preventive measures to control this pandemic. Therefore, in this article, an optimization problem is formulated that accommodates both isolation and social distancing features of the individuals. To promote social distancing, we solve the formulated problem by applying a noncooperative game that can provide an incentive for maintaining social distancing to prevent the spread of COVID-19. Furthermore, the sustainability of the lockdown policy is interpreted with the help of our proposed game-theoretic incentive model for maintaining social distancing where there exists a Nash equilibrium. Finally, we perform an extensive numerical analysis that shows the effectiveness of the proposed approach in terms of achieving the desired social-distancing to prevent the outbreak of the COVID-19 in a noncooperative environment. Numerical results show that the individual incentive increases more than 85% with an increasing percentage of home isolation from 25% to 100% for all considered scenarios. The numerical results also demonstrate that in a particular percentage of home isolation, the individual incentive decreases with an increasing number of individuals
    corecore